CANMate Linux API Reference

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



CANMAte API Details :

« HANDLE OpenCANMate(LPVOID IpDataCallBack = NULL, LPVOID
IpEventCallBack = NULL)

This API enumerates all USB ports and finds the USB port to which
CANMate hardware is connected. It then opens the CANMate. CANMate
device internally initializes the CAN controller and replies with the status.
Note : Present version of CANMate Shared Object supports only one
CANMate. It will open only the first CANMate even if multiple CANMate
devices are connected to a PC.

Parameters :
1. LPVOID lpDataCallBack
This is a pointer to a call back function for the application to
receive data
2. LPVOID IpEventCallBack
This is a pointer to a call back function for the application to
receive events and error notifications.

Return Value :

Returns the USB port handle if SUCCESS. Returns NULL if there is any
error.

* int CloseCANMate(HANDLE hDev)

This API sends the CLOSE command to CANMate. It also closes the USB
port and frees all the related resources.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.

Return Value :

Returns CANMate_ ERROR_SUCCESS if successful

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



e int SetCANBaudRate(HANDLE hDev, char chBaudRate)
This command sets the CAN baud rate of the CANMate.
Parameters :

1. HANDLE hDev

Handle of the USB port connected to CANMate device.
2. char chBaudRate

Baud rate to be set. This should be one of the following.

BAUD_RATE33K
BAUD_RATES0K
BAUD_RATES80K
BAUD_RATES83K
BAUD_RATE100K
BAUD_RATE125K
BAUD_RATE200K
BAUD_RATE250K
BAUD_RATES00K
BAUD_RATEG625K
BAUD_RATE800K
BAUD_RATE1000K

Return Value :
Returns CANMate_ ERROR_SUCCESS if successful.
e int WriteCANMessage(HANDLE hDev, CANMsg* pMsg)

This function transmits a single CAN message. No ack is given for the
transmitted message and hence the function does not wait.

Parameters :
1. HANDLE hDev
Handle of the USB port connected to CANMate device.

2. CANMsg*pMsg
Pointer to a can message structure

Return Value :

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



Returns number of bytes written
 int StartReception (HANDLE hDev)

This function sets the CANMate to transfer the received messages to the PC
application. CANMate firmware will not transfer the messages to PC unless
this function is invoked.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.

Return Value :
Returns CANMate_ ERROR_SUCCESS if successful.
* int StopReception (HANDLE hDev)
This function instructs the CANMate firmware to stop transferring the received
messages to the PC application. It is advised to call this function if the PC app
is not listening for any CAN messages.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.

Return Value :
Returns CANMate_ ERROR_SUCCESS if successful.
e int SetNormalMode(HANDLE hDev)
This function sets the CANMate in “Normal” mode. This is the default mode in
which CANMate powers up. This mode should be set for normal operation of
CANMate.
Parameters :
1. HANDLE hDev

Handle of the USB port connected to CANMate device.
Return Value :

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



Returns CANMate_ ERROR_SUCCESS if successful.
* int SetLoopbackMode(HANDLE hDev)

This function sets the CAN controller inside CANMate in “Loopback” mode.
In loopback mode transmitted messages from PC application will not be
transmitted in the CAN bus, but will be returned as received messages. This
mode is useful during application development as a testing and debugging aid.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.

Return Value :
Returns CANMate_ ERROR_SUCCESS if successful.
* int GetCurrentMode(HANDLE hDey, int* pData)
This function gets the current CAN controller operating mode.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.

2. int* pData
The current mode will be returned in this pointer. It can be
one of the following values.

ECAN_NORMAL_MODE
ECAN_LOOPBACK_MODE

Return Value :

Returns CANMate_ ERROR_SUCCESS if successful.

* int GetCurrentBaudRate(HANDLE hDev, int* pData)
This function gets the current CAN controller baud rate.

Parameters :

1. HANDLE hDev

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



Handle of the USB port connected to CANMate device.

2. int* pData
The current baud rate will be returned in this pointer. It can
be one of the following values.

BAUD_RATE33K
BAUD_RATE50K
BAUD_RATE80K
BAUD_RATES83K
BAUD_RATE100K
BAUD_RATE125K
BAUD_RATE200K
BAUD_RATE250K
BAUD_RATES00K
BAUD_RATEG625K
BAUD_RATES800K
BAUD_RATE1000K

Return Value :

Returns CANMate_ ERROR_SUCCESS if successful.

* int GetFirmwareVersion(HANDLE hDev, int* pData)

This function gets the current CANMate firmware version number. Version
number is a 2 byte format with MSB representing the Major version and LSB
the Minor version.

Parameters :

1. HANDLE hDev
Handle of the USB port connected to CANMate device.
2. int* pData
The current firmware version number will be returned in
this pointer.
Return Value :

Returns CANMate_ ERROR_SUCCESS if successful.

e typedef int (*EVNT_CALLBACK)(CANEvent *pnEvnt)

This is the prototype of event call back.

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



Parameters :

1. CANEvent *pnEvnt
Pointer to a CANEvent structure.

Return Value :

Returns CANMate_ ERROR_SUCCESS.

* typedef int (*DATA_CALLBACK)(CANMsg *pMsg, int *nNumMsgs)
This is the prototype of data call back.
Parameters :

1. CANMsg *pMsg
Pointer to a CANMsg structure. For receiving CAN
Messages.

2. int *nNumMsgs
Number of messages will be returned in this pointer.

Return Value :

Returns CANMate_ ERROR_SUCCESS.

CANMate Shared Object Structures
This section explains the structures used by the CANMate
1. CAN Message Structure

Fields :

1. bExtended : This field should be non zero for extended messages and O for
standard messages

chTmStmpH : Upper byte of time stamp field.

chTmStmpL : Lower byte of time stamp field

Time stamp is ignored for transmit messages

EArbId1 : MSB containing bits 25 to 29 in the case of extended messages

kW

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



and igonored for standard messages

6. EArbldO : 3rd Byte in the case of extended messages and igonored for
standard messages

7. SArbld1 : 2nd Byte in the case of extended messages and MSB containing
bits 9 to 11 for standard messages

8. SArbIdoO : 1st Byte for both extended and standard messages

9. DLC : Message length (8 maximum)

2. CAN Event Structure
Fields

chErr : The type of error
This is a bit field and following is the definition

1. #define UART_ERROR 0x01
2. #define CAN_TXERROR 0x02
3. #define CAN_BUS_OFF 0x04
4. #define CAN_BUF_OVERFLOW 0x08
5. #define CAN_TX_PASSIVE 0x10
6. #define CAN_RX_PASSIVE 0x20
7. #define CAN_ERR_WARNING 0x40
8. #define PC_BUF_OVERFLOW 0x80

chTxErrCnt : Transmit error counter value from the hardware
chRxErrCnt : Receive error counter value.

Note on Error Handling : Specific CAN errors CAN_BUS_OFF,
CAN_TX_PASSIVE and CAN_RX_PASSIVE will put CAN controller in CANMate
hardware into an irrecoverable error mode and will require closing and

opening the device again from the application software.

* Refer CANMateDI1.h for defenitions used in this document

CANMate Linux API Reference @copyright Deep Thought Systems (P) Ltd.2013



